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Abstract
After the collapse of the San Rafael waterfall in Northeast Ecuador on 2 February 2020, a regressive erosion started along the 
River Coca putting national infrastructure, the environment and indigenous communities at risk. A fast monitoring of areas 
exposed to landslides on local scales therefore is necessary to provide adequate risk management for the region. The study 
area, located in the Andean tropics close to the volcano Reventador, is characterized by steep slopes, seismic activity and high 
rainfall throughout the year. Sentinel-1 SAR data provide a solution for time-series monitoring in the region as imagery is avail-
able day and night and not affected by cloud cover. Landslide monitoring with Sentinel-1 SAR data was implemented using a 
bi-temporal change detection (BCD) with SNAP and a sequential change detection (SCD) with EESA Docker and the Google 
Earth Engine (GEE) aiming at the identification of a suited approach for fast disaster monitoring and management. The SCD 
showed an overall accuracy of 0.91 compared to 0.88 using the BCD approach validated with high-resolution imagery. Based 
on the landslide detection, hazard variables could be further identified to support future hazard and risk assessment. Fast pro-
cessing of Sentinel-1 time-series data in a cloud-based environment allows for near real-time monitoring of ongoing erosion 
and provides a potential for pro-active measures to protect the national economy, the environment and the society.
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Zusammenfassung
Regressive Erosion am Rio Coca in Nordost Ecuador – Hangrutschungs-Monitoring mit Sentinel-1 zur Unterstützung des 
Katastrophenrisikomanagements. Nach dem Zusammenbruch des San Rafael Wasserfalls im Nordosten Ecuadors am 2. 
Februar 2020, begann eine regressive Erosion entlang des Rio Coca, welche die nationale Infrastruktur, die Umwelt sowie 
indigene Gemeinschaften bedrohte. Lokales Nahechtzeit-Monitoring des für Hangrutschungen exponierten Areals, ist daher 
notwendig um ein angepasstes Risikomanagement für die Region zu entwickeln. Das Untersuchungsgebiet rundum den Vul-
kan Reventador in den andinischen Tropen ist durch steile Hänge, seismische Aktivitäten und hohe Niederschläge über das 
ganze Jahr gekennzeichnet. Für ein zeitlich hoch aufgelöstes Monitoring der Region sind Sentinel-1 SAR Bilder geeignet, 
da sie Tag und Nacht und bei Bewölkung zur Verfügung stehen. In dieser Studie wurde eine Hangrutschungsdetektion mit 
Sentinel-1-Daten durchgeführt, wobei eine bi-temporale Veränderungsdetektion (BCD) in SNAP mit einer sequenziellen 
Veränderungsdetektion (SCD) mit EESA Docker und der Google Earth Engine (GEE) verglichen wurde. Die SCD zeigte 
eine Gesamtgenauigkeit von 0,91 verglichen mit einer Gesamtgenauigkeit von 0,88 mit dem BCD Ansatz. Beide Ansätze 
wurden mit hochaufgelösten multispektralen Bilddaten validiert. Basierend auf der Detektion der Hangrutschungen konnten 
des Weiteren Variablen identifiziert werden, die für das Gefahrenmonitoring für zukünftige Risikobewertungen eingesetzt 
werden können. Ein schnelles Prozessieren von Sentinel-1 Zeitreihen in einer cloud-basierten Umgebung erlaubt somit das 
Nahechtzeit-Monitoring der permanenten Erosion und zeigt Potenziale für proaktive Messungen um die nationale Wirtschaft, 
die Umwelt und die Gemeinschaften vor Ort zu schützen.
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1  Introduction

The number of disasters in the Americas has increased 
exponentially (Tsuneki et al. 2017). In Ecuador, the rate of 
damage caused by natural hazards is higher than the world 
average and the country is highly exposed to natural hazards 
in South America (Greiving et al. 2021). About 73.6% of the 
Ecuadorian population is exposed to two or more natural 
hazards (Dilley et al. 2012). Landslide hazards are expected 
to increase in frequency and intensity in the country due 
to climate change and infrastructure vulnerability (Carvajal 
et al. 2017; Sepúlveda and Petley 2015). The main causative 
factors for their occurrence are caused by its location in the 
Pacific Ring of Fire and further triggered by the El Niño 
Southern Oscillation (ENSO) (EM-DAT 2022). Landslides 
frequently occur in the country due to the combined effects 
of high seismic activity and the tropical mountain environ-
ment with steep slopes, high variability in hydrological pat-
terns and increasing land pressure especially in the steep 
uplands in addition (Guns and Vanacker 2013; Tibaldi et al. 
1995).

On 2 February 2020, the biggest waterfall of Ecuador, 
San Rafael, collapsed due to an unusual erosion phenom-
enon caused by volcanic debris avalanche deposit behind the 
natural lava-dam barrier of the waterfall (Reyes et al. 2021). 
A following change of the course of the River Coca fur-
ther initiated regressive erosion upstream of the San Rafael 
waterfall (Ortiz et al. 2021; Reyes et al. 2021). Since then, 
ongoing mass movements along the River Coca put infra-
structure, environment and indigenous communities at risk 
with cascading impacts considering the damage of national 
oil pipes located in the affected area. The oil infrastructure 
is further of high importance for the country’s oil exporta-
tion and thereby the economy. Broken oil pipes affected the 
land of the Kichwa population, one of the 12 national tribes, 
shortly after the disappearance of the San Rafael water-
fall (Bravo Díaz 2021). Since then, large vegetated areas 
are eroding. Furthermore, the erosion is approaching and 
threatening the Coca Codo Sinclair Dam, a hydroelectric 
power plant built in 2016 which has a capacity of 1500 MW 
(Terneus-Paez and Jiménez-Medoza 2019). The dam nowa-
days is supplying 25% of the national electricity demand 
(Agencia de Regulación y Control de Electricidad 2019). 
Current debates in Ecuador claimed that the construction 
of the hydroelectric plant is related to the collapse of the 
San Rafael waterfall and has influenced the regressive ero-
sion process of the River Coca (Bernal 2017; Holtgrieve 
and Arias 2022). The damage caused by ongoing river ero-
sion will make Ecuador face a drop in its national electricity 
supply.

Monitoring attempts are ongoing to protect the region 
and the renewable energy provision of the country. There-
fore, landslide monitoring is crucial for fast disaster risk 

management response in the region, especially in areas of 
multidimensional risk like the northeastern region of Ecua-
dor. Understanding mass movements due to erosion in the 
region helps to develop an adequate risk assessment for land-
slide-prone areas such as the Andean region (Orejuela and 
Toulkeridis 2020). Landslides usually occur within a short 
period of time affecting the population and the environment 
in its direct proximity. Heavy rainfall periods and eventually 
flooding can further trigger landslides. Together with geo-
logic structures and slope characteristics, they represent the 
main hazard components for landslide risk (Lee and Talib 
2005; van Westen et al. 2003).

Remote sensing and Geographic Information Systems 
(GIS) play key roles for landslide risk monitoring. Geo-
spatial analysis in a GIS allows the modeling of landslide 
susceptibility considering multiple causative factors. Assess-
ment of landslide susceptibility can be conducted with 
Fuzzy Membership Function (Kirschbaum et al. 2016; Stan-
ley and Kirschbaum 2017), Analytical Hierarchy Process 
(AHP) (Bahrami et al. 2021; Ghorbanzadeh et al. 2018) or 
Weighted Linear Combination (WLC) (Jabbar et al. 2019), 
or the mentioned in combination. Resulting maps help to 
identify areas exposed to landslides and provide insights 
with regard to the dynamics triggering an event. However, 
these models were rather developed for small-scale assess-
ments and a lack of high-resolution data limit the potential 
for in detail landslide susceptibility assessment. Remote-
sensing time-series analysis can further assist the monitoring 
of landslides and their impacts especially in regions with a 
high susceptibility to landslides. Here, remote but especially 
fast monitoring is crucial.

Mass movements are often related to heavy rainfall 
events. Dense cloud cover restricts the use of optical data 
such as Landsat 8 or Sentinel-2 imagery especially in tropi-
cal regions. Sentinel-1 Synthetic Aperture Radar (SAR) can 
overcome these challenges and is well suited for landslide 
detection (Kyriou and Nikolakopoulos 2018). The use of 
SAR data allows observations in areas with intense cloud 
coverage as occurring in the tropics. With regard to land-
slide monitoring, in particular, SAR data also provide the 
potential to derive additional information on surface rough-
ness and structure compared to optical remote-sensing data. 
Sentinel-1 has already been used extensively for landslide 
(Raspini et al. 2018; Tzouvaras et al. 2020) and also for 
landslide risk (Olen and Bookhagen 2018) monitoring. With 
SAR data, changes in surface roughness and dielectric prop-
erties can be investigated using their backscatter information 
in the context of incoherent change detections. Furthermore, 
complex values can be considered to investigate phase shifts 
in the context of coherent change detections or interferom-
etry (Jung and Yun 2020). However, monitoring of mass 
movements is challenging in tropical forest environments 
due to a rapid and dense vegetation growth which restricts 
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the use of interferometric approaches (Razak et al. 2013; 
Washaya et al. 2018). Attempts have been made monitor-
ing landslides with bi-temporal change detection (BCD) 
methods especially using optical data and SAR (Huang 
et al. 2020; Mondini et al. 2021; Qin et al. 2018). Besides, 
to our current knowledge, cloud-based sequential change 
detection (SCD) for landslide monitoring using SAR has not 
been used and integrated for landslide monitoring and man-
agement. SCD can represent a very fast method to identify 
landslides in near-real time depending on the availability of 
images in the cloud-based environment. However, it is also 
key to validate resulting maps to identify adequate methods 
for individual study areas. Landslide risk monitoring and 
management could benefit from these techniques especially 
in remote areas such as the Amazon rainforest in Ecuador 
which are in addition difficult to access.

Models for landslide early warning aim to reduce land-
slide-induced damage and assist in closing the gap of local 
landslide research in Latin America and the Caribbean 
(Sepúlveda and Petley 2015). In line with the Sendai Frame-
work for Disaster Risk Reduction (SFDRR) and to support 
priority 1 ‘understanding disaster risk’, this research study 
will conduct landslide detection in the study region and 
its potential for disaster risk management and analyze the 
development of the ongoing erosion between the San Rafael 
waterfall and the Coca Codo Sinclair Dam using (i) a BCD 
with a principal component analysis (PCA) in comparison 
to (ii) an SCD in a cloud-computing based environment to 
provide opportunities for near-real-time monitoring of land-
slide developments. Detected areas are (iii) validated with 
high-resolution imagery and support the identification of 
and adequate monitoring method and further help to iden-
tify potential trigger variables in the study area. Knowing 
the impact of certain trigger variables can be integrated in 
national risk assessment by underlining areas exposed to 
landslide hazard. While steep slopes in combination with 
heavy rainfall or high soil moisture in the sub-surface can 
trigger landslides in an area, the presence of vegetation cover 
could consolidate the land mass (Kalsnes and Capobianco 
2022; Prancevic et al. 2020; Yuliza et al. 2016). Therefore, 
this study aims to collaborate with the national disaster risk 
management in close cooperation with local experts.

2 � Study Area

The study area is located in the Northeast of Ecuador (Fig. 1). 
It is surrounded by the provinces of Napo and Sucumbios, in 
the Subandean zone of Ecuador. In the North is the protected 
Cayambe-Coca National Park. The River Coca crosses the 
area with an average discharge of 290 m3/s (Programa de las 
Naciones Unidas para el Medio Ambiente 2018). Elevation 
levels reach 500–3600 m a.s.l. The highest point is the peak 

of the stratovolcano Reventador, which belongs to a complex 
of aligned volcanoes with Pan de Azúcar, Sumaco, and Conos 
de Puyo. The last eruption period started in 2002. Since then, 
the Reventador volcano remains active. The lavas that char-
acterized the volcanic complex are andesitic and basaltic-
andesitic. The cone of elongated shape reaches slopes up to 
34°. In the last massive eruption (2002), the cone lost 110 m 
of its altitude. Since then, volcanic activity has contributed to 
an increase of its extension up to the current size. Volcanic 
rocks of the Misahualli Formation constitute the basement 
of the area. Lava flows, pyroclastic material flows, avalanche 
deposits, and lahars result from the eruptions of the Reven-
tador Volcano. The upper layer over which the River Coca 
circulates is highly dynamic. Cycles of deposition and erosion 
currently form layers of materials with high heterogeneity and 
optimal conditions for water infiltration.

Humid montane forests cover the majority of the area. 
The precipitation increases toward the Amazon basin and 
ranges from 3000 to 6000 mm mean annual precipitation 
(MAP) with a gradient from East to West. The average tem-
perature is 20 °C. The region is a megadiverse hotspot sur-
rounded by a national park, Cayambe-Coca, and a worldwide 
recognized UNESCO biosphere reserve, Sumaco. Besides 
the economic importance of the study area for their natural 
resources, such as oil and energy, it has a valuable biological 
and cultural richness under the protection of the national law 
and international agreements.

3 � Data and Methods

Landslide occurrence monitoring and assessments of the 
actual event were analyzed using Sentinel-1 SAR data and 
validation of detected changes assessed with high-resolution 
(HR) optical images between 2020-02-14 and 2020-03-
2021. Based on the identified landslide detection approach, 
trigger variables were identified by the analysis of classified 
training samples into landslide and non-landslide samples.

3.1 � Data

3.1.1 � Sentinel‑1 SAR Data

Rainfall in the study area is high during the whole year, 
while additionally high cloud cover is present. SAR data, 
from an active remote sensor, allows monitoring during 
day and night and under all weather conditions. The detec-
tion of occurred landslides is based on Sentinel-1 Level-1 
Ground Range Detected (GRD) images with Interferomet-
ric Wide Swath (IW) mode from 2020-02-14 to 2020-03-
2021 with a temporal resolution of ~ 6 days and a spatial 
resolution of 20 m. This period was chosen based on the 
main landslide activities with regard to the regressive 
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erosion along the River Coca. Level-1 Ground Range 
Detected (GRD) products which are multi-looked and ter-
rain corrected were preferred and the IW mode allows for 
dual polarization with a spatial resolution of 5 by 20 m. 
Single and Dual polarization modes were considered, i.e., 
co-polarization with VV, often used for soil moisture or 
flood monitoring (Martinis et al. 2018; Tsyganskaya et al. 
2018) and cross-polarization with VH, which supports the 
monitoring of soil properties also in combination with VV 
(Canty et al. 2020; Periasamy 2018; Yang and Guo 2019).

3.2 � 3.1.2 High‑Resolution Imagery

Results were validated in close exchange with local experts, 
comparisons with local assessment reports by CELEC SUR, 
as well as with high-resolution imagery. High-resolution refer-
ence data were generated from a PlanetScope image acquired 
on 2021–02-14, which represents the latest cloud free image 
at the time of the validation. Included is also the PS Tropical 
Normalized Analytic Biannual Archive basemap from June to 
November 2019 representing the reference image prior to the 
erosion. Data specifications are listed in Table 1.

3.2.1 � Landslide Hazard Assessment

For the identification of potential trigger variables, we inte-
grated data on slope, land-cover density, sub-surface soil 
moisture and precipitation (Table 2). These variables are 
important to be included for further risk assessment and can 
guide national risk monitoring and management frameworks.

Data on slopes were based on the NASA Shuttle Radar 
Topography Mission (SRTM) (Farr et al. 2007) with 30 m 
spatial resolution. Data on the Enhanced Vegetation Index 
(EVI) were derived from MODIS with 250 m resolution 
and MAP was based on the Climate Hazards Group Infra-
Red Precipitation with Station data (CHIRPS) (Funk et al. 
2015). EVI data were preferred over the Normalized Differ-
ence Vegetation Index (NDVI) due to the monitoring over 
high biomass regions (Jiang et al. 2008). CHIRPS data are 
available on a daily basis with 4 km spatial resolution. With 
regard to in detailed assessment of precipitation records in 
the study area, a peak in rainfall amounts could be spotted 
toward the end of January 2020 when considering daily pre-
cipitation records. This heavy rainfall event could have been 
one of the causative factors for the erosion at the San Rafael 
waterfall. Nevertheless, monthly precipitation rates have 
large variations throughout the year and are common. Sur-
face and sub-surface soil moisture information was derived 
from the NASA-USDA Enhanced SMAP Global Soil Mois-
ture Data with a 3-day temporal and a 10 km spatial resolu-
tion (O'Neill et al. 2016).

3.3 � Methods

3.3.1 � Radar‑Based Landslide Monitoring

Aiming at near real-time monitoring of landslides in densely 
vegetated areas leads to the identification of two approaches 
based on SAR imagery over the defined observation period: 
(i) BCD analysis based on PCA and (ii) SCD using a 

Fig. 1   Study area at the River 
Coca between the San Rafael 
Waterfall and the Coca Codo 
Sinclair Hydropower Dam. 
Background Image: Biannual 
PS Tropical Basemap from 
December 2019 to June 2020
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cloud-computing environment. The integration of Planet-
lab imagery with 3 m resolution allowed validation of our 
results for both approaches. Figure 2 shows the workflow of 
the BCD and SCD approach.

Bi-temporal Change Detection (BCD) with PCA
Analysis of the first approach was performed with the 

Sentinel Application Platform (SNAP). All relevant data 
between the defined period in a 12-day interval were down-
loaded. After creation of a subset to minimize the data load 
to the study area, the orbit filter was applied in SNAP. The 
next two steps of pre-processing included the radiometric 
calibration and the speckle filtering. Radiometric calibra-
tion relates the pixel values to the radar backscatter of the 
selected scene. The calibration leads to a correction of 
radiometric disturbances and an atmospheric correction 
(Filipponi 2019). Speckle filtering removes the speckled 
structures that usually appear in radar images. The origin 
of these structures is phase differences in the backscattered 
signal. Speckle filtering was used to remove image noise 
using a filter matrix (in this case a 5 × 5 filter matrix) which 
overwrites the greyscale values. This helps to reduce the 
overestimation of the detected changes (Filipponi 2019). 
The final pre-processing step was represented by geocoding 
using the Range-Doppler Terrain Correction in SNAP. This 
process provides a correction of distortions, for example, due 
to lateral shots from the satellite sensor. In addition, Range-
Doppler Terrain Correction applies a digital elevation model 
(i.e., NASA SRTM with 90 m resolution) (Jarvis et al. 2008) 
and a coordinate system to correctly align the satellite image 
before the change detection (Filipponi 2019).

After the pre-processing, respective data pairs can be 
passed on to the change detection assessment. In this case, 
both polarizations (VV + VH) were used and could be com-
pared after completion (Asokan and Anitha 2019). For 

comparison of both results, a PCA is carried out. A PCA can 
be used for this purpose as it only allows the integration of 
those weighted values into the final product, which have the 
highest correlation and the highest significance to each other 
but also show the highest probability for visualization of the 
correct eroded areas. Furthermore, the PCA removes scatter 
and noise (Asokan and Anitha 2019). Moreover, the PCA 
results in new principal component images which allows 
datasets to be more simplified and illustrated by approximat-
ing a large number of statistical variables using a smaller 
number of linear combinations.

The spatio-temporal development of the detected changes 
was visualized considering the most recent changes in time 
(cmap). The single PCA images were turned into binary 
(change, no change) images using a threshold. With a combi-
nation of a Python script and QGIS, the binary images were 
turned into raster files with a single value (between 1 and 
32), which is reliant on the image’s position in time. Dur-
ing the stacking process of these ‘time-tagged’ single-value 
images, the highest pixel value of each position is consid-
ered, resulting in a single band ‘cmap’. Finally, we masked 
out permanent water bodies using the JRC Global Surface 
Water data set (Pekel et al. 2016).

Sequential Change Detection (SCD)
An efficient approach to monitor regressive erosion using 

remote-sensing data at spatio-temporal scales is the Sequen-
tial Change Detection (SCD) as described by Conradsen 
et al. (2016) and Canty et al. (2020). We used the EESAR 
Docker Container provided by Canty (2021) and conducted 
the SCD using the Google Earth Engine (GEE) cloud-com-
puting environment for the processing of 32 Sentinel-1 B 
GRD images in its 120th ascending orbit between the obser-
vation period. Analysis for dual polarization, VV and VH, 
was similar to the BCD approach. For the sequential SAR 

Table 1   Data specifications of 
landslide monitoring

Data Time Resolution Source

Sentinel-1 GRD IW 14/02/20—16/03/21 20 m Copernicus
PS Tropical Normalized Analytical Biannual 

Archive Basemap (Reference)
06/2019 – 11/2019 3 m Planet

PlanetScope (Validation) 14/02/2021 3 m Planet

Table 2   Data for landslide 
hazard assessment

Data type Dataset Resolution Source

Slope NASA SRTM 30 m Farr et al. (2007)
EVI MODIS MOD13Q1 250 m Didan (2015)
Precipitation CHIRPS 4 km Funk et al. (2015)
Soil moisture NASA-USDA Enhanced SMAP 

Global Soil Moisture Data
10 km Bolten et al. (2010); O'Neill 

et al. (2016); Sazib et al. 
(2018)
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change detection, especially multi-temporal polarimetric 
SAR data were considered. On a per-pixel basis, the tech-
nique identifies if a change occurred at a defined significance 
level between two SAR images taking into consideration 
the full time-series starting with the first image and end-
ing with the most recent one (Canty et al. 2020). With a 
test statistic, p values are generated for each observation 
and a change map is then generated based on the testing of 
p values against the defined significant level (Canty et al. 
2020). For this study, the analysis was carried out with a 
significance level of 0.01. By integrating the omnibus test 
(Nielsen et al. 2017), the identification of changes in a pixel 
can be conducted and updated. Besides the bands contain-
ing the changes between the intervals (bmap), the resulting 
raster dataset includes a band with the time of most recent 
changes (cmap), the time of first change (smap) and another 
band with the total number of registered changes (fmap). For 

analysis, the cmap was chosen, and to remove water level-
related changes, we also masked out permanent waterbodies 
using the JRC Global Surface Water data set.

Validation
Based on the HR imagery included for validation (see 

Sect. 3.1.2), the bands with the changes between the obser-
vation period were extracted and vectorized for validation. 
For the purpose of a first validation with additional data 
based on expert information, we reduced the validation area 
to a river section of approximately 7.8 km close to where 
the San Rafael waterfall was located. We then combined the 
results of the BCD and the SCD with the digitized eroded 
areas derived from the HR imagery and computed a confu-
sion matrix based on the true-positive, true-negative, false-
positive and false-negative areas.

Fig. 2   Workflow of BCD and 
SCD approach with Sentine-1 
time-series data
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Landslide Hazard Detection
Based on the landslide detection with Sentinel-1 poten-

tial variables for hazard were monitored over the consid-
ered time period with time-series analysis in GEE and R. 
Sample areas of non-landslide detected areas were further 
included to detect differences in the variable behavior com-
pared to those where landslides could be detected and vali-
dated. Daily data on precipitation were averaged over 3 days 
for a timely overlap with the 3-day average soil moisture 
information.

4 � Results

4.1 � Comparison of the BCD and SCD Approach

Figure  3 shows the occurrence of changes with both 
approaches by visualizing the cmap results referring to 
changes over the observed time period 2020-02-14 to 2021-
03-16 focusing on the most recent changes in the study 
area. While the BCD detected an area of 355.9 km2 being 
affected by changes that could refer to landslides, the SCD 
identified 420.9 km2 within the whole study area. Around 
66.51% of all pixels identified in the SCD overlapped with 
those detected in the BCD, while the BCD showed only an 
overlap of 42.76% with the SCD approach. In addition, we 
could also detect multiple pixels off the main regressive ero-
sion area at the River Coca being located close to Volcano 
Reventador with the BCD approach.

Validation with HR data was conducted for a smaller area 
along the lower part of River Coca (see also Fig. 3). Insights 
in the visual comparison are given as an example in Fig. 4 
where PlanetScope Basemaps before and after the erosion 
are compared with resulting maps out of the SCD approach.

Validation As we focus on regressive river erosion along the 
River Coca, the validation area was digitized with a 650 m 
buffer along the river to identify false and true positives as 
well as false and true negatives in both landslide detection 
approaches. Figure 5 shows the spatial validation of both 
approaches and highlights a 67.19% larger area of true posi-
tives for the SCD approach. About 75.31% of detected changes 
detected by the SCD were further identified as true positive, 
while only 58.54% of the BCD were identified as true positive.

According to the confusion matrix, the BCD got an 
overall accuracy of 0.89, a sensitivity of only 0.44, and a 
specificity of 0.97, while the SCD has a sensitivity of 0.75, a 
specificity of 0.94, and an overall accuracy of 0.91 (Table 3).

Potential Variables for Landslide Risk Monitoring Results 
of the BCD and the validation map were used as input data 
for the landslide detection areas to be compared with poten-
tial trigger variables. The identification of trigger variables 

helps to build a comprehensive risk assessment with regard 
to landslide monitoring and management in the region con-
sidering the given preconditions. Besides the EVI, precipi-
tation rates and soil moisture data, only the integration of 
slope information was not included in a dynamic manner.

Slope We could observe an overlap of higher slopes with land-
slides especially in the early stages of the regressive erosion. 
Toward the starting of the regressive erosion from 2020-02-14 
to 2020-03-21, we can detect rather lower slope values similar 
to those values in the non-landslide detected areas.

Precipitation and Soil MoisturePrecipitation rates were 
observed over the whole time period based on CHIRPS 
data. A peak can be measured by begin of February which 
overlaps with the start of the regressive erosion on 2 Febru-
ary and the disappearance of the San Rafael waterfall. Fig-
ure 7 shows precipitation and sub-surface soil moisture plots 
with a trend for the observation period in the study area for 
landslide detected areas (Fig. 7a) as well as non-landslide 
detected areas (Fig. 7b).

While the variability of precipitation is similar in both 
areas, precipitation rates and the trend of precipitation in 
the observation period are slightly higher in the landslide 
detected areas.

Sub-surface soil moisture according to the considered 
data is higher in the non-landslide detected areas. Even by 
considering a coarse resolution of 10 km, higher soil mois-
ture levels could lead to an increase of landslide hazard in 
the region.

Based on high precipitation rates during the start of the 
regressive erosion, further all pixels of the SCD were plot-
ted with maximum precipitation rates over the whole time 
period and could indicate a relationship between the occur-
rence of rainfall with maximum precipitation rates (Fig. 8).

Vegetation As a dense vegetation cover might stabilize the soil 
and could thereby reduce the risk for landslides, we expected 
a relationship between vegetation productivity (represented 
by EVI) and landslide, respectively, non-landslide areas. EVI 
profiles of landslide and non-landslide detection areas did not 
indicate a dense relationship with landslides as only small dif-
ferences could be identified (Fig. 9). In the beginning of the 
erosion, EVI profiles show higher values in the non-landslide 
areas, but with regard to the full observation period, a clear 
relationship cannot be identified.

5 � Discussion

Landslide monitoring in the study area is crucial to sup-
port national risk management. As landslides represent 
a fast hazard, near real-time monitoring techniques are 
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needed. However, also pro-active action is required which 
demands a comprehensive understanding of landslide risk 
and dynamics of causative factors. Understanding landslide 

movements and their development helps to train models for 
early warning mechanisms.

The use of Sentinel-1 and thereby SAR data is neces-
sary due to high cloud coverage and detection of surface 

Fig. 3   Landslide detection with the a bi-temporal change detection approach (BCD) and the b sequential change detection approach SCD based 
on Sentinel-1 time-series data between 2020-02-14 and 2021-03-16. The black box shows the area used for validation
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Fig. 4   Validation of the northwestern segment of the beginning regressive erosion for visual comparison

Fig. 5   Validation area (as shown in Fig. 6) for both the BCD and the SCD approach with regard to the digitized reference data using HR imagery 
by PlanetScope
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parameters. Nevertheless, monitoring of landslides with 
SAR data is still challenging in tropical regions. An Inter-
ferometric Coherence Difference (ICD) technique was used 
in the presented study which focused on the backscattering 
signal caused by rough surfaces such as bare soil and steep 
slopes. Coherent Change Detection (CCD) techniques were 
tested by including interferometric information, but results 
were misleading due to a highly dense vegetation cover in 
the tropical Andean region of the River Coca.

The presented results allow for near real-time monitor-
ing with Sentinel-1 time-series with a spatial resolution of 
20 m and a 6-day temporal resolution. BCD helped to iden-
tify specific movements during fixed time intervals with an 
overall accuracy of 0.88, while the SCD approach, run in a 
cloud-based environment, represents a more time-efficient 
analysis of landslide detection and allows for a higher accu-
racy of 0.91 compared to the BCD. Validation areas have 
been included but could be expanded for further analysis. 

Nevertheless, optical reference data cannot replace field vali-
dation data and might contribute to error propagation in the 
validation processes, especially as the acquisition times of 
PlanetScope do not match accurately with the revisit time 
of Sentinel 1B. Thus, the SCD’s tendency to over-prediction 
could be the result of uneven recording dates (reference data 
from 2021-02-14 and SCD data from 2021-02-20). Moreo-
ver, the manually digitized eroded areas in the reference 
images might have been inaccurate in some parts and do 
not depict the reality on the ground.

With regard to the validation area where we integrated 
HR imagery and digitized patterns of erosion to identify 
the pixels that were classified correctly, we could identify 
the SCD as the better approach due to a 67.19% bigger area 
classified as ‘true positive’ compared to the BCD approach.

Potential trigger variables could be identified such as 
steeper slopes in the areas where the regressive erosion 
started as well as increasing precipitation and sub-surface 
soil moisture rates in the landslide detected regions. Profiles 
of EVI in the areas were not showing a significant relation-
ship to landslides. Here, analysis per time step could be 
relevant as spatial and temporal autocorrelation has to be 
considered. While landslides seem to be triggered by topo-
graphic preconditions and kept ongoing due to biophysical 
dynamic variables, nevertheless, additional factors, such 
as mining activities, whether legal or illegal, at the origin 
of the erosion should be considered as well and integrated 

Fig. 6   Boxplot showing the single landslide detection time steps compared to slope values in the study region

Table 3   Accuracy assessment based on HR imagery

CD change detection

Bi-temporal CD Sequential CD

Sensitivity 0.370 0.752
Specificity 0.974 0.942
Accuracy 0.879 0.912
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in hazard and risk mapping approaches. To improve the 
assessment of landslide variables, higher resolution data on 
precipitation but also soil moisture would be important to 
integrate.

The here presented approach shows how landslide risk 
could be assessed in near-real time considering a sequen-
tial time-series analysis in a cloud-based environment. 
Furthermore, information on explanatory variables in a 
timely manner to allow for dynamic variations should be 
considered. Similar to drought events where the standardized 

precipitation index (SPI) which is often used as an indica-
tor of drought hazard when values are below 0, an increase 
in precipitation over a short time could be embedded in a 
dynamic modeling of landslide hazard.

Fast toward near real-time monitoring using SAR data 
helps to support early warning mechanisms. In close 
exchange with local and regional experts, the monitoring 
of landslide risk can be guided toward pro-active action, 
including suitability assessments for future infrastructure 
construction and stability measures.

Fig. 7   Time Series analysis over a landslide and b non-landslide detection areas for precipitation and sub-surface soil moisture
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6 � Conclusions

The risk of landslides leading to environmental and socio-
economic damage is high in the presented study area. Infra-
structural damage with regard to roads but especially key 
infrastructure for Ecuador’s economy and energy such as oil 
pipes and the Coca Codo Sinclair Dam are of high national 
interest. Landslides along the River Coca in direct proxim-
ity to the dam but especially with already destroyed main 
oil pipes lead to cascading effects of an already ongoing 

disaster. Oil spills occurred in the study region in April 2020 
and January 2022 due to broken oil pipes originated from 
mudslides, affect indigenous people and their lands, and 
have various impacts on the social, economic and environ-
mental dimension threatening sustainable development in 
many facets. Protection of indigenous knowledge and indig-
enous communities in affected areas should, therefore, be 
part of the national strategy for pro-active risk management 
across scale. Latin American countries, such as Ecuador, 
have a high dependence on hydropower generation, a clean 
source of energy, which is in line with the Agenda 2030 

Fig. 8   Maximum precipita-
tion rates in non-landslide and 
landslide detected areas

Fig. 9   EVI profiles in landslide and non-landslide detection areas
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and SDG 7 but which makes the country’s electricity supply 
highly vulnerable to natural hazards. These hazards, land-
slides being among them, are also expected to be worsened 
by climate change. In the here presented study, a method for 
fast landslide monitoring using an SCD analysis could be 
identified. By comparing results from the BCD and the SCD 
validated with high-resolution imagery, higher accuracies 
of the SCD with 0.91 compared to 0.88 of the BCD were 
identified. In addition, a much faster processing due to the 
application in a cloud-base environment represents a high 
potential for landslide risk monitoring and management in 
the region. The SCD promotes a continuous analysis over the 
time-series, and does not compare binary images only, but 
considers the trend over all images from the time-series. The 
analysis of trigger variables showed partly some expected 
results such as the close relationship between slope or soil 
moisture and landslides, but could not identify a close rela-
tionship, e.g., between vegetation cover and landslides. The 
selected method could become an important asset for the 
operation of power plants, guarantees security of energy sup-
ply, and strengthens the improvement of protection mech-
anisms of the society, the economy and the environment. 
Further research embeds the here presented methods to iden-
tify landslide hazard, vulnerability and exposure variables to 
create risk profiles for the region.
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